Development of Novel Water-Gas-Shift Membrane Reactor Addressing Barrier L: H₂ Purification/CO Clean-up Target: <10 ppm CO in Product Stream #### W.S. Winston Ho The Ohio State University, Columbus, OH DOE Hydrogen & Fuel Cells 2003 Annual Merit Review Claremont Resort Hotel, Berkeley, CA, May 19-22, 2003 ### Water-Gas-Shift Membrane Reactor - Relevance/Objectives - Produce Enhanced H₂ Product with <10 ppm CO at High Pressure Used for Reforming - Overcome Barrier L: H₂ Purification/CO Clean-up - Achieve Target: <10 ppm CO in Product Stream - Approach: CO₂-Selective Membrane - Remove CO₂ for H₂ Enhancement - Drive WGS Reaction to Product Side $$CO + H_2O \rightarrow H_2 + CO_2 \uparrow$$ - Decrease CO to <10 ppm # On-Board/Off-Board Purification of Reformed Gas with Membrane Light Weight - Compact Membrane Module - Simple Operation - Pressure Differential - No Moving Parts #### Novel Membrane Process for H₂ Purification Conventional / Commercial Membrane Process Novel Membrane Process - High-purity H₂ Recovered at High Pressure - High-purity H₂ Product without CO₂ Desirable - + CO₂ acts as diluent / produces CO via reverse WGS reaction - High H₂ Purity/Recovery via High Driving Force from Air Sweep - Minimal Parasitic Power Required for Air Blown Separation ## Fuel-Cell Fuel Processing with CO₂-Selective Membranes Low Temperature CO₂-Selective Membrane High Temperature CO₂-Selective Membrane ## CO₂-Selective Membranes by Incorporating Amines in Polymer Networks ... Facilitated Transport **Example: Polyvinylalcohol- Containing Amine Membrane** ## **Project Timeline** | | 2001 | | 2002 | | | 2003 | | 2004 | |-------------------------------|-----------|-----------|---------------------|-----------|-----------|---------------|----------|----------| | Task | <u>4Q</u> | <u>1Q</u> | <u>2Q</u> <u>3Q</u> | <u>4Q</u> | <u>1Q</u> | <u> 2Q 3Q</u> | 4Q | 1Q 2Q 3Q | | Phase 1 | | | | | | | | | | 1. Modeling Study to Show | | | | | | | | | | <10 ppm CO Feasible | | | | \ | | | | | | 2. Synthesis of Novel | | | | | | | | | | Membranes | | | | | | | | | | Phase 2 | | | | | | | | | | 3. Characterization of | | | | | | | | | | Membranes | | | | | | | | | | 4. Set-up of Lab Reactor | | | | | | | _ | | | 5. Membrane Fabrication | | | | | | | | | | 6. Proof-of-Concept Demo | | | | | | | Δ | | | Phase 3 | | | | | | | _ | | | 7. Set-up of Membr. Reactor | r | | | | | | | | | 8. Fabrication of Prototype | | | | | | | | | | Membrane Module | | | | | | | | | | 9. Prototype Reactor Demo | | | | | | | | | | ar i rototype izeactor beillo | | | | | | | | | ## High CO₂/H₂ Selectivity Obtained ### High CO₂ Permeability Obtained # CO₂ Permeability Did Not Change with Pressure Significantly Feed Pressure (atm) ### High CO₂/CO Selectivity Obtained ## CO₂-Selective Membrane Reactor ### Modeling of Water Gas Shift Membrane Reactor Shows < 10 ppm CO Achievable Reactor Length (cm) ## Modeling of WGS Membrane Reactor Shows <10 ppm CO Achievable with Cu/ZnO Catalyst #### High H₂ Enhancement Achievable ## CO₂/H₂ Selectivity Does Not Affect Exit CO Concentration Significantly ### CO₂/H₂ Selectivity Affects H₂ Recovery ## Modeling Shows < 10 ppm CO Also Achievable for 10% CO Feed ## Significant Interactions/Collaborations - Work with H2fuel / Unitel Technologies / Avista Labs on Membrane Scale-up - Successful Scale-up to 40 Inches Wide by ~500 ft Long - Membrane Evaluation by Auto Company Two Presentations to Freedom CAR Fuel Cell Tech Team ## Summary - Membranes with High CO₂/H₂ & CO₂/CO Selectivities & CO₂ Flux Synthesized - Modeling Results for Synthesis Gases from Autothermal Reforming Show: - < 10 ppm CO Achievable - High CO Conversion Achievable - High H₂ Enhancement Achievable - High H₂ Recovery Achievable ## **Future Plans** Continue to Synthesize / Characterize Membranes with Improved Permeability Conduct Proof-of-Concept Demonstration Carry out Prototype Membrane Reactor for Fuel Cell (50 kW)